Publication Type Journal Article
Title Unlocking the in vitroanti- inflammatory and antidiabetic potential of Polygonum maritimum
Authors Maria Joao Rodrigues Luisa Custodio Andreia Lopes Marta Oliveira N. R. Neng J. M. F. Nogueira Alice Martins Amélia P. Rauter Joao Varela Luisa Barreira
Groups HC Chem4Env
Journal PHARMACEUTICAL BIOLOGY
Year 2017
Month
Notice: Undefined index: in /afs/ist.utl.pt/groups/cqe/web/tmp/templates_c/77f86a5f762542dadf50c7f7fefa96acd45c2726_0.file.paper.tpl.html.php on line 163
Volume 55
Number 1
Pages 1348-1357
Abstract Context: Several Polygonum species (Polygonaceae) are used in traditional medicine in Asia, Europe and Africa to treat inflammation and diabetes. Objective: Evaluate the in vitro antioxidant, anti-inflammatory and antidiabetic potential of methanol and dichloromethane extracts of leaves and roots of the halophyte Polygonum maritimum L. Material and methods: Antioxidant activity was determined (up to 1mg/mL) as radical-scavenging activity (RSA) of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2 azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), copper (CCA) and iron (ICA) chelating activities and iron reducing power (FRAP). NO production was measured in lipopolysaccharide (LPS)-stimulated macrophages for 24 h at concentrations up to 100 mu g/mL and antidiabetic potential was assessed by alpha-amylase and alpha-glucosidase inhibition (up to 10 g/mL) assays. The phytochemical composition of the extracts was determined by gas chromatography-mass spectrometry (GC-MS). Results: The methanol leaf extract had the highest activity against DPPH center dot (IC50 = 26 mu g/mL) and ABTS1(+)center dot (IC50 = 140 mu g FRAP (IC50 = 48 mu g/mL) and CCA (IC50 = 770 mu g/mL). Only the dichloromethane leaf extract (LDCM) showed anti-inflammatory activity (IC50 = 48 mu g/mL). The methanol root (IC50 = 19 mu g/mL) and leaf (IC50 = 29 mu g/mL) extracts strongly inhibited baker s yeast alpha-glucosidase, but LDCM had higher rat s alpha-glucosidase inhibition (IC50 = 2527 mu g/mL) than acarbose (IC50 = 4638 mu g/mL). GC-MS analysis identified beta-sitosterol, stigmasterol, 1-octacosanol and linolenic acid as possible molecules responsible for the observed bioactivities. Conclusions: Our findings suggest P. maritimum as a source of high-value health promoting commodities for alleviating symptoms associated with oxidative and inflammatory diseases, including diabetes.
DOI http://dx.doi.org/10.1080/13880209.2017.1301493
ISBN
Publisher
Book Title
ISSN 1388-0209
EISSN 1744-5116
Conference Name
Bibtex ID ISI:000399479000012
Observations
Back to Publications List