Publication Type Journal Article
Title A New Thermodynamically Favored Flubendazole/Maleic Acid Binary Crystal Form: Structure, Energetics, and in Silico PBPK Model-Based Investigation
Authors Gabriel L. B. de Araujo Fabio Furlan Ferreira Carlos E. S. Bernardes Juliana A. P. Sato Otavio M. Gil Dalva L. A. de Faria Raimar Loebenberg Stephen R. Byrn Daniela D. M. Ghisleni Nadia A. Bou-Chacra Terezinha J. A. Pinto Selma G. Antonio Humberto G. Ferraz Dmitry Zemlyanov Debora S. Goncalves M. E. M. Piedade
Groups MET
Journal CRYSTAL GROWTH \& DESIGN
Year 2018
Month April
Volume 18
Number 4
Pages 2377-2386
Abstract The use of flubendazole (FBZ) in the treatment of lymphatic filariasis and onchocerciasis (two high incidence neglected tropical diseases) has been hampered by its poor aqueous solubility. A material consisting of binary flubendazole/maleic acid crystals (FBZ/MA), showing considerably improved solubility and dissolution rate relative to flubendazole alone, has been prepared in this work through solvent assisted mechanical grinding. The identification of FBZ/MA as a binary crystalline compound with salt character (proton transfer from MA to FBZ) relied on the combined results of powder X-ray diffraction, Raman spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), and differential scanning calorimetry (DSC). Isothermal solution microcalorimetry studies further suggested that the direct formation of FBZ/MA from its precursors in the solid state is thermodynamically favored. A comparison of the in silico pharmacokinetic performance of the FBZ/MA with that of pure FBZ based on a rat fasted physiology model indicated that the absorption rate, mean plasma peak concentration, and absorption extension of FBZ/MA were similar to 2.6 times, similar to 1.4 times, and 60\% larger, respectively, than those of FBZ. The results here obtained therefore suggest that the new FBZ/MA salt has a considerable potential for the development of stable and affordable pharmaceutical formulations with improved dissolution and pharmacokinetic properties. Finally, powder X-ray diffraction studies also led to the first determination of the crystal structure of FBZ.
DOI http://dx.doi.org/10.1021/acs.cgd.7b01807
ISBN
Publisher
Book Title
ISSN 1528-7483
EISSN 1528-7505
Conference Name
Bibtex ID ISI:000429508200050
Observations
Back to Publications List