Publication Type Journal Article
Title Interaction of organic compounds with chondritic silicate surfaces. Atomistic insights from quantum chemical periodic simulations
Authors Albert Rimola Josep M. Trigo-Rodriguez Zita Martins
Groups
Journal PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Year 2017
Month July
Volume 19
Number 28
Pages 18217-18231
Abstract The interaction of 14 different probe organic molecules with the crystalline (010) forsterite MgSi4 surface has been studied at quantum chemical level by means of B3LYP-D2* periodic simulations. The probe molecules are representatives of the class of soluble organic compounds found in carbonaceous meteorites, namely: aliphatic and aromatic hydrocarbons, alcohols, carbonyl compounds, amines, amides, nitrogen heterocycles, carboxylic and hydroxycarboxylic acids, sulfonic and phosphonic acids, amino acids, and carbohydrates. With the exception of the aliphatic and aromatic hydrocarbons, the interaction takes place mainly between the O and N electron donor atoms of the molecules and the outermost Mg surface cations, and/or by hydrogen bonds of H atoms of the molecules with O surface atoms. Dispersion also contributes to the final interaction energies. Each surface/molecule complex has also been characterized by computing its harmonic vibrational spectrum, in which the most significant frequency perturbations caused by the surface interaction are described. With the calculated interaction energies, a trend of the intrinsic affinity of the probe molecules with the silicate surface has been obtained. However, this affinity scale does not correlate with the experimental abundances of the class of compounds found in the Murchison meteorite. A brief discussion of this lack of correlation and the factors that can help us to understand the abundances is provided.
DOI http://dx.doi.org/10.1039/c7cp03504g
ISBN
Publisher
Book Title
ISSN 1463-9076
EISSN 1463-9084
Conference Name
Bibtex ID ISI:000406089200013
Observations
Back to Publications List