Publication Type Journal Article
Title Steps towards highly-efficient water splitting and oxygen reduction using nanostructured beta-Ni(OH)(2)
Authors Aldona Balciunate Kush Kumar Upadhyay Kristina Radinovic D. M. F. Santos Maria F. Montemor B. Sljukic
Groups CSSE
Journal RSC ADVANCES
Year 2022
Month
Notice: Undefined index: in /afs/ist.utl.pt/groups/cqe/web/tmp/templates_c/77f86a5f762542dadf50c7f7fefa96acd45c2726_0.file.paper.tpl.html.php on line 163
Volume 12
Number 16
Pages 10020-10028
Abstract beta-Ni(OH)(2) nanoplatelets are prepared by a hydrothermal procedure and characterized by scanning and transmission electron microscopy, X-ray diffraction analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy. The material is demonstrated to be an efficient electrocatalyst for oxygen reduction, oxygen evolution, and hydrogen evolution reactions in alkaline media. beta-Ni(OH)(2) shows an overpotential of 498 mV to reach 10 mA cm(-2) towards oxygen evolution, with a Tafel slope of 149 mV dec(-1) (decreasing to 99 mV dec(-1) at 75 degrees C), along with superior stability as evidenced by chronoamperometric measurements. Similarly, a low overpotential of -333 mV to reach 10 mA cm(-2) (decreasing to only -65 mV at 75 degrees C) toward hydrogen evolution with a Tafel slope of -230 mV dec(-1) is observed. Finally, beta-Ni(OH)(2) exhibits a noteworthy performance for the ORR, as evidenced by a low Tafel slope of -78 mV dec(-1) and a number of exchanged electrons of 4.01 (indicating direct 4e(-)-oxygen reduction), whereas there are only a few previous reports on modest ORR activity of pure Ni(OH)(2).
DOI http://dx.doi.org/10.1039/d2ra00914e
ISBN
Publisher
Book Title
ISSN
EISSN 2046-2069
Conference Name
Bibtex ID WOS:000775169100001
Observations
Back to Publications List