Publication Type Journal Article
Title Resveratrol-Loaded Hydrogel Contact Lenses with Antioxidant and Antibiofilm Performance
Authors Maria Vivero-Lopez Andrea Muras Diana Silva Ana Paula Serro Ana Otero Angel Concheiro Carmen Alvarez-Lorenzo
Groups MET
Journal PHARMACEUTICS
Year 2021
Month April
Volume 13
Number 4
Pages
Abstract Contact lenses (CLs) are prone to biofilm formation, which may cause severe ocular infections. Since the use of antibiotics is associated with resistance concerns, here, two alternative strategies were evaluated to endow CLs with antibiofilm features: copolymerization with the antifouling monomer 2-methacryloyloxyethyl phosphorylcholine (MPC) and loading of the antioxidant resveratrol with known antibacterial activity. MPC has, so far, been used to increase water retention on the CL surface (Proclear(R) 1 day CLs). Both poly(hydroxyethyl methacrylate) (HEMA) and silicone hydrogels were prepared with MPC covering a wide range of concentrations (from 0 to 101 mM). All hydrogels showed physical properties adequate for CLs and successfully passed the hen s egg-chorioallantoic membrane (HET-CAM) test. Silicone hydrogels had stronger affinity for resveratrol, with higher loading and a slower release rate. Ex vivo cornea and sclera permeability tests revealed that resveratrol released from the hydrogels readily accumulated in both tissues but did not cross through. The antibiofilm tests against Pseudomonas aeruginosa and Staphylococcus aureus evidenced that, in general, resveratrol decreased biofilm formation, which correlated with its concentration-dependent antibacterial capability. Preferential adsorption of lysozyme, compared to albumin, might also contribute to the antimicrobial activity. In addition, importantly, the loading of resveratrol in the hydrogels preserved the antioxidant activity, even against photodegradation. Overall, the designed hydrogels can host therapeutically relevant amounts of resveratrol to be sustainedly released on the eye, providing antibiofilm and antioxidant performance.
DOI http://dx.doi.org/10.3390/pharmaceutics13040532
ISBN
Publisher
Book Title
ISSN
EISSN 1999-4923
Conference Name
Bibtex ID ISI:000643527000001
Observations
Back to Publications List